

ASH 2018

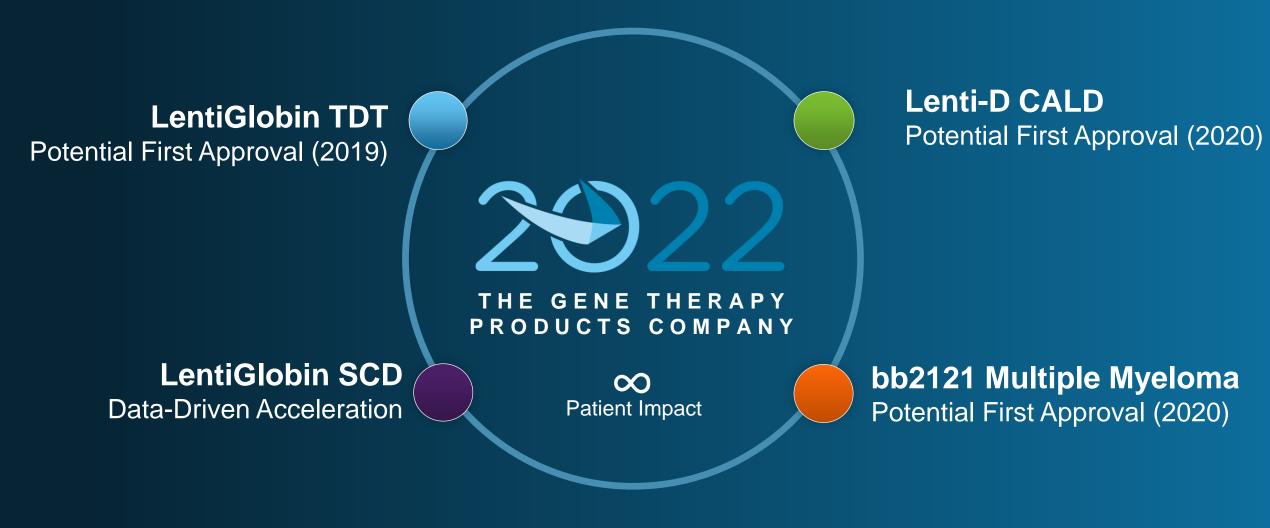
Forward-Looking Statements

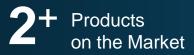
These slides and the accompanying oral presentation contain forward-looking statements and information. The use of words such as "may," "might," "will," "should," "expect," "plan," "anticipate," "believe," "estimate," "project," "intend," "future," "potential," or "continue," and other similar expressions are intended to identify forward-looking statements. For example, all statements we make regarding the initiation, timing, progress and results of our preclinical and clinical studies and our research and development programs, our ability to advance product candidates into, and successfully complete, clinical studies, and the timing or likelihood of regulatory filings and approvals are forward looking. All forward-looking statements are based on estimates and assumptions by our management that, although we believe to be reasonable, are inherently uncertain. All forward-looking statements are subject to risks and uncertainties that may cause actual results to differ materially from those that we expected. These statements are also subject to a number of material risks and uncertainties that are described in our most recent quarterly report on Form 10-Q, as well as our subsequent filings with the Securities and Exchange Commission. Any forward-looking statement speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

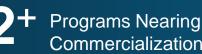
Agenda

Welcome	Liz Pingpank, director, investor relations, bluebird bio Nick Leschly, chief bluebird, bluebird bio
Severe Genetic Diseases	David Davidson, M.D., chief medical officer, bluebird bio John Tisdale, M.D., National Heart, Lung and Blood Institute at the National Institutes of Health (NIH), Bethesda, MD
Multiple Myeloma	Liviu Niculescu, M.D., Ph.D., SVP, global medical affairs, bluebird bio Nina Shah, M.D., University of California, San Francisco
Closing	Nick Leschly, chief bluebird, bluebird bio

Welcome


Nick Leschly, chief bluebird

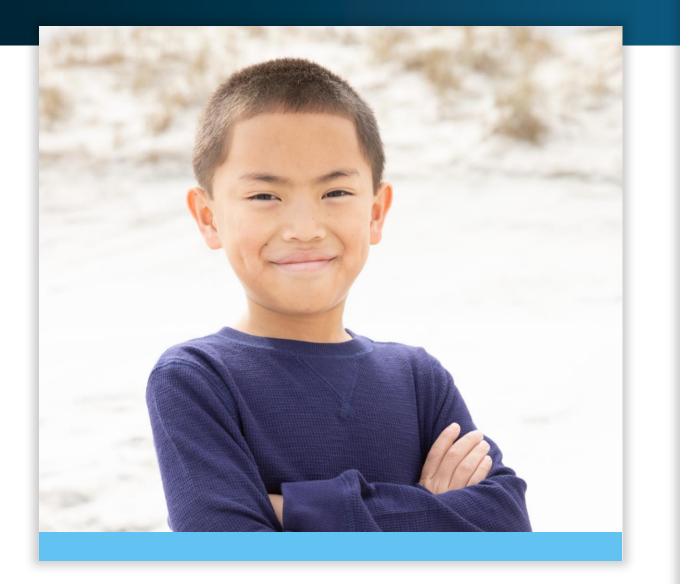




2022 Vision on Track

Additional Programs in the Clinic

2018 – A Year of Tremendous Learning and Growth

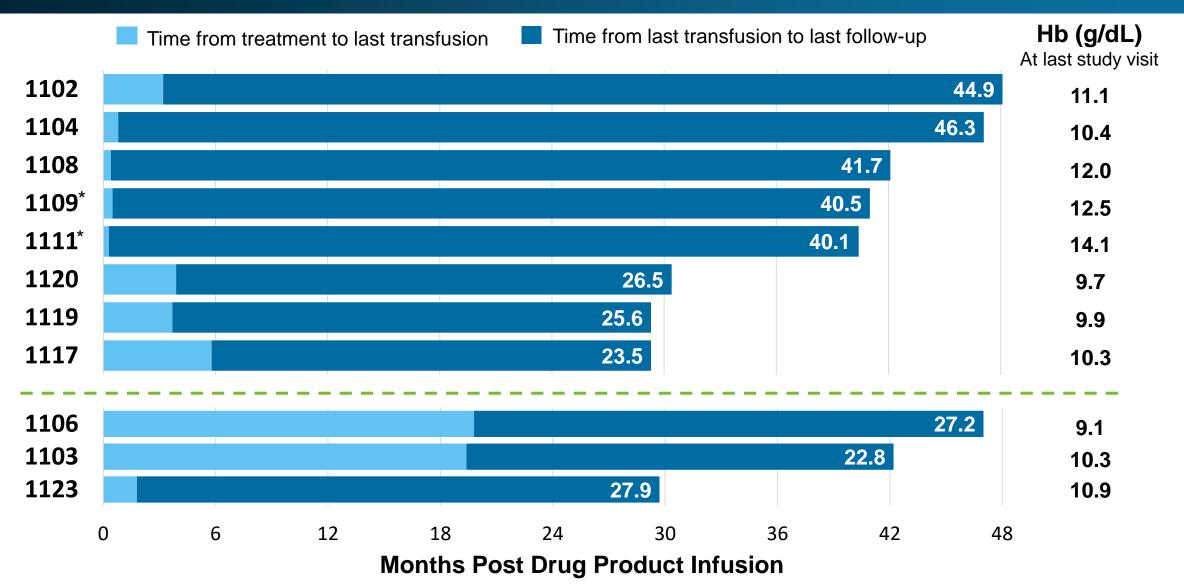

Advancing the development of our programs and working with regulatory authorities to reach our goal of delivering transformative therapies to patients with severe genetic diseases and cancer.		
Transfusion-Dependent β-Thalassemia	 First Marketing Authorization Application (MAA) filed with EMA with PRIME Designation 2019 EU launch on track U.S. registration plan based on Northstar-2 with Breakthrough Designation 	
Sickle Cell Disease	 Robust and consistent production of anti-sickling HbA^{T87Q} hemoglobin Accelerated development path with RMAT Designation 	
Cerebral Adrenoleukodystrophy	 General regulatory agreement on Biologics License Application (BLA) and MAA filings Anticipated 2020 approval on track with Breakthrough Designation 	
Multiple Myeloma	 Registration-enabling study enrollment complete; 3rd & 2nd line studies enrolling soon bb21217 proof-of-concept; dose escalation underway Anticipated 2020 approval on track with Breakthrough and PRIME Designations 	
Pipeline & Technology	 Manufacturing: North Carolina facility build out Research Engine: Regeneron & Gritstone oncology partnerships Pipeline Growth: SCD next gen BCL11a program with Dana-Farber/Boston Children's Cancer and Blood Disorders Center <i>in vivo</i> gene editing CAR T preclinical proof of concept (CBL-B) 	

Breadth & Depth of ASH Data Underscores BLUE Potential

N∲RŢŀŀŞŢAR N∲RŢŀŀSŢAR-2 N∲RŢŀŀSŢAR-3	LentiGlobin TDT	 Northstar: Outcomes following study completion Northstar-2: Updated results First look: Northstar-3
Д+ ндв-206	LentiGlobin SCD	 HGB-206 Group C: Updated results HGB-206 Group A & B: Updated results Real world evidence: U.S. population HGB-205: Analysis of RBC properties in patients
)႔ ငူင္တဲ့ CRB-402	bb21217 MM	• First look: CRB-402 initial results in R/R multiple myeloma
BCL11a	shRNA ^{miR} SCD	First look: Initial clinical results in partnership with Dana-Farber/Boston Children's Cancer and Blood Disorders Center
	Preclinical	 First look: megaTAL engineered CAR T cells NHP-based target validation with gene-edited hematopoietic stem cells

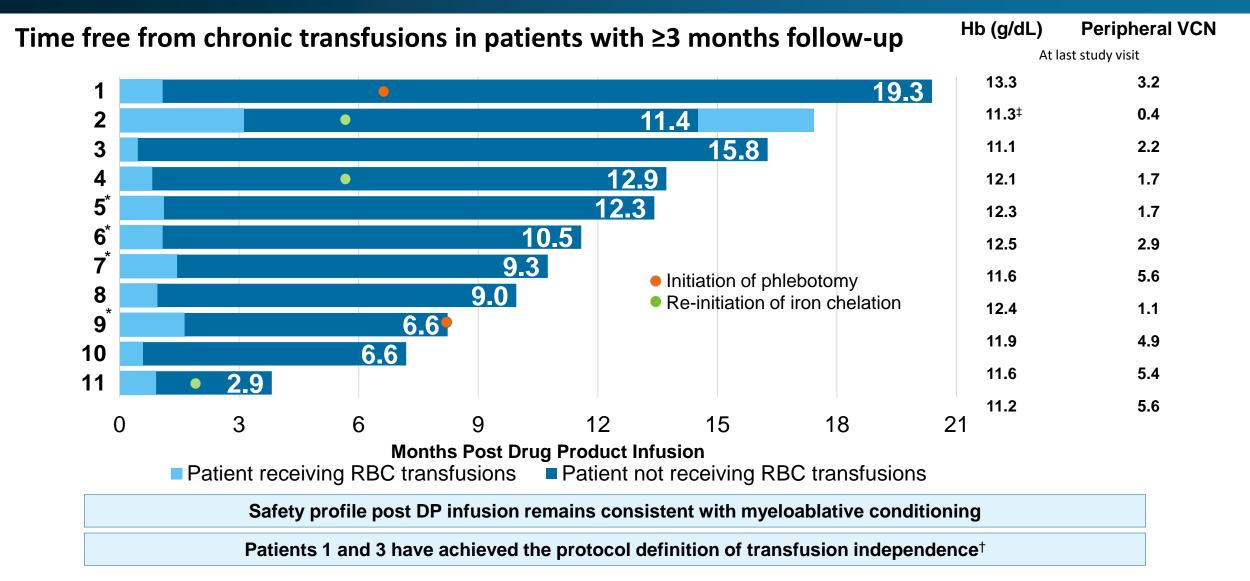
Transfusion-Dependent β-Thalassemia and Sickle Cell Disease

David Davidson, M.D., chief medical officer, bluebird bio

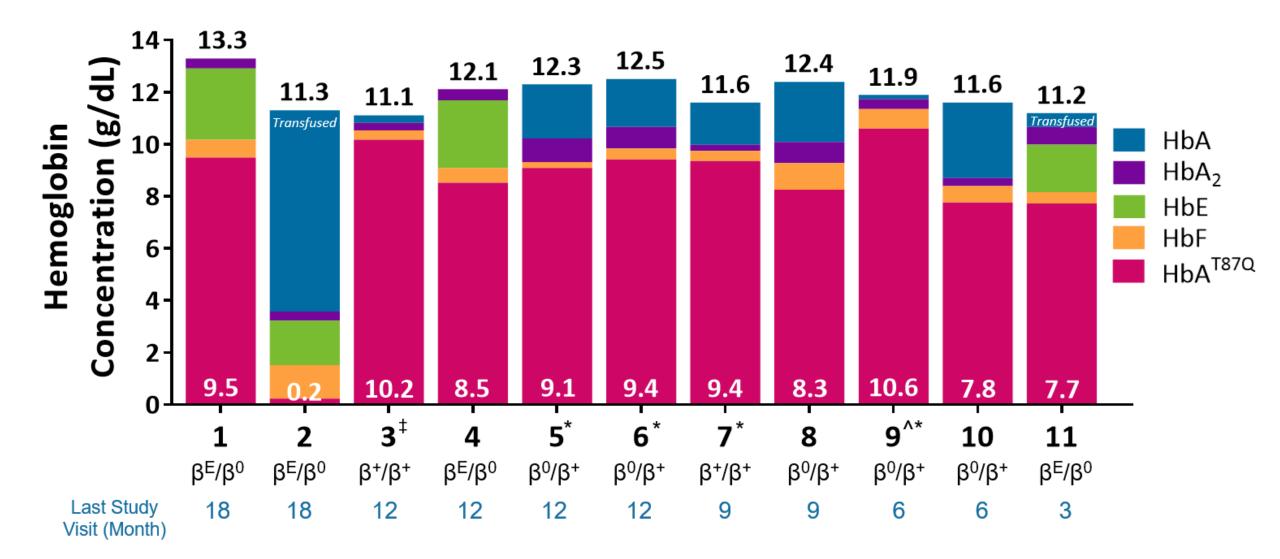

Transfusion-Dependent β-Thalassemia (TDT)

 Inherited blood disease that requires lifelong, frequent blood transfusions and iron reduction therapy

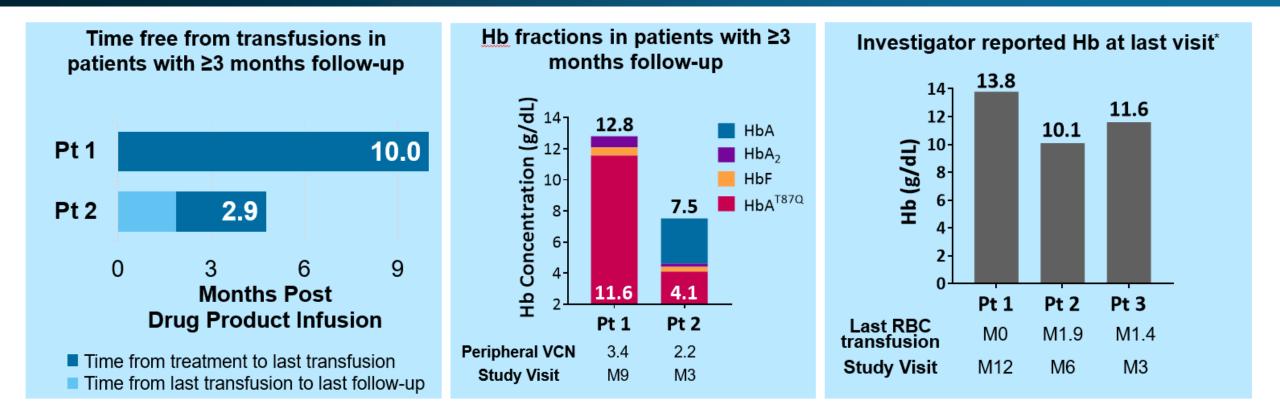
PROGRAM OVERVIEW


- Filed MAA with European Medicines Agency
- General regulatory agreement with FDA for BLA filing
- Studies ongoing:
 - Northstar-2 (HGB-207)
 - Northstar-3 (HGB-212)
 - HGB-205
- Long-term follow-up: LTF-303

8/10 Patients with Non- β^0/β^0 Genotypes and 3/8 Patients with β^0/β^0 Genotypes are Free from Chronic RBC Transfusions


10/11 Patients Are Transfusion Free with Hemoglobin >11g/dL

N≉RTHSTAR-2


NASDAQ: BLUE *Male patients; [‡]Hb supported by transfusions; [†]Weighted average Hb ≥9 g/dL without any RBC transfusions for ≥12 months; Hb, hemoglobin; VCN, vector copy number (vector copies/diploid genome)

High Levels of Gene Therapy Derived HbA^{T87Q} in 10/11 Patients

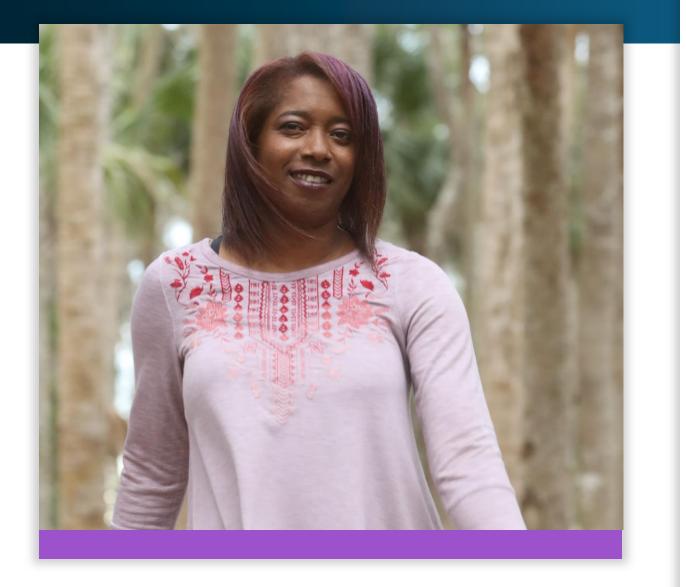
NASDAQ: BLUE *Male patients; [‡]Patient is homozygous for IVS-I-5 β-globin mutation; ^Patient is heterozygous for IVS-I-5 β-globin mutation. Hb, hemoglobin.

Normal Total Hemoglobin in First Northstar-3 β⁰/β⁰ Patient

Safety profile post-drug product infusion remains consistent with myeloablative conditioning

*Includes investigator reported data as of November 19, 2018, not from programmed statistical outputs

AEs, adverse events; DP, drug product; Hb, hemoglobin; VCN, vector copy number (vector copies/diploid genome)


NASDAQ: BLUE

Data as of September 14, 2018 unless otherwise noted 14

TDT Data – Key Takeaways

Transfusion-Dependen β-Thalassemia	 MAA Filed with EMA; commercial preparation on track Northstar-2: 10/11 patients with ≥3 months follow-up are transfusion free Northstar-3: First patient with β⁰/β⁰ genotype achieving normal total hemoglobin; 2/2 patients with ≥6 months follow-up producing >10g/dL total hemoglobin
Sickle Cell Disease	 Accelerated development plan using novel composite primary endpoint based on hemoglobin Group C patients treated under refined manufacturing protocol show robust production of anti-sickling hemoglobin Early indications from biomarker analysis support fundamentally improving RBC physiology
	 bb2121: KarMMa enrollment complete; clinical program is advancing including planned 2019 studies in front line, in collaboration with Celgene bb21217: Overall response rate of 83% at first dose level tested (vs. 57% at same dose in CRB-401); early indications of increased persistence using enriched CAR T cells
	 shmiR: At ≥4 months post-gene therapy, ~70% F cells were observed and HbF contributed ~25-30% of total Hb CBL-B: Further validation underway; taking aim at solid tumors

Sickle Cell Disease Development Plan

Sickle Cell Disease (SCD)

- Severe blood disorder that causes anemia, frequent pain crises and shortened lifespan
- Global annual birth incidence
 ~ 300,000 400,000
- Mean age of death in the U.S. is 44 years¹

PROGRAM OVERVIEW

- Plan to pursue accelerated development path based on hematological primary endpoint
 - Phase 3 study to begin in 2019
- HGB-206 amended and Group C expanded

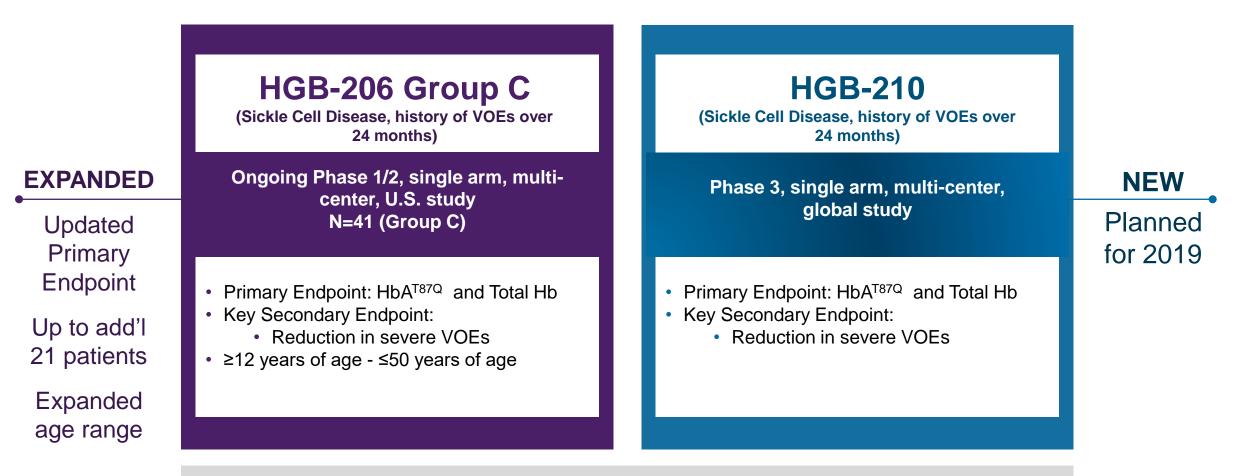
¹Paulukonis et al, California's Sickle Cell Data Collection Cohort, 2005-2015* ASH 2017*

Increasing Momentum to #ConquerSCD

2017

2018

- March 2017, bluebird SCD case study published in NEJM
- July 2017, the FDA approved Endari (L-glutamine oral powder) to address acute complications of SCD

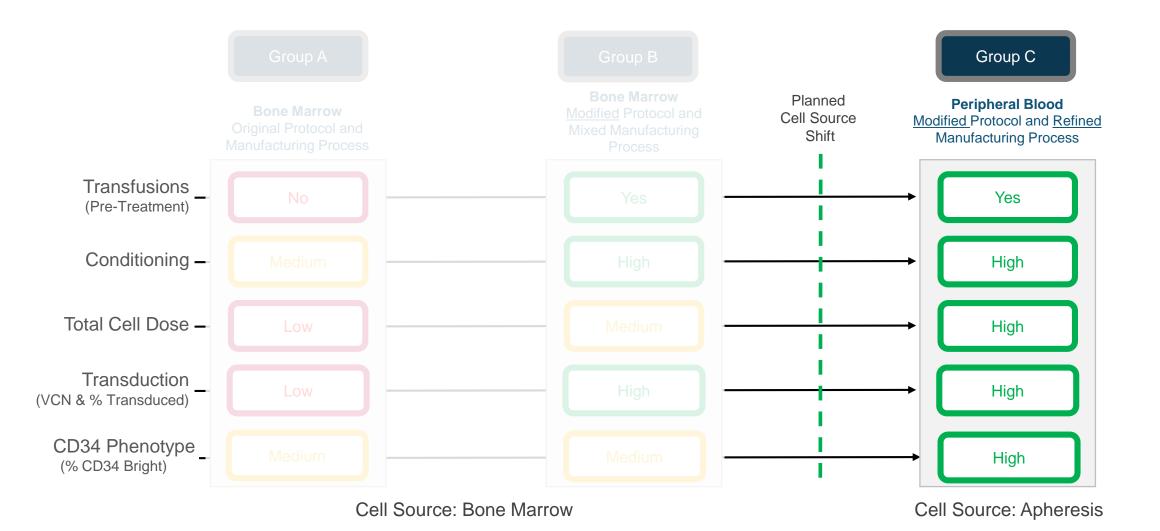


- February 2018, Admiral Brett Giroir, M.D., appointed as Assistant Secretary for Health, HHS, is shining a spotlight on the toll of SCD and the need for improved treatment options
- March 2018, NHLBI launched "Cure SCD Initiative" spearheaded by Dr. Francis Collins
- October 2018, FDA-ASH Sickle Cell Disease Clinical Endpoints Workshop

"Unfortunately, some treated [SCD] patients will have no reduction of their symptoms and the disease will continue to progress," says Ann T. Farrell, M.D., director of the FDA's Division of Hematology Products, CDER. "*Better therapies are desperately needed*," Farrell explains. "We will continue to work with sponsors as much as possible to help remove roadblocks to new product development. *It's important for the FDA to help as much as we can*."

Accelerated Development Plan Using Novel Composite Primary Endpoint Based on Hemoglobin

Additional Clinical Investigation in Other Patient Types and Ages Planned


Plans Based on Ongoing Engagement with Regulators

Sickle Cell Disease

John Tisdale, M.D., National Heart, Lung and Blood Institute at the NIH, Bethesda, MD

Evolution of LentiGlobin in SCD

Group C: Patient Characteristics N=14 Patients Who Started Cell Collection

Parameter	Group C N=14
Age at consent	25.5
median (min – max), years	(18 – 36)
Gender	6F 8M
Genotype β ^S /β ^S	14
Prior SCD History	
Hydroxyurea use, n	8
Recurrent VOCs [*] , n	9
Annualized no. of events, median (min – max)	6.5 (3.5 – 14.0)
ACS [†] , n	2
Annualized no. of events, median (min – max)	1 (1 – 1)
Any history of stroke, n	3
TRJV >2.5 m/s , n	0

* >2 events/year in preceding 2 years; *>2 episodes in preceding 2 years, with at least one episode in the past year or in the year prior to the initiation of a regular transfusion program

ACS, acute chest syndrome; F, female; M, male; VOC, vaso-occlusive crisis; pRBC, packed red blood cell; TRJV, tricuspid regurgitant jet velocity

Group C: Safety Profile Generally Consistent with Myeloablative Busulfan Conditioning

Non-hematologic [*] grade ≥ 3 AEs Post-DP infusion in ≥2 patient	n (%) N=9
Febrile neutropenia	6 (67)
Stomatitis	6 (67)
Serious AEs* Post-DP infusion in ≥1 patient	n (%) N=9
Abdominal pain	1 (11)
Depression	1 (11)
Drug withdrawal syndrome	1 (11)
Hallucination	1 (11)
Mucosal inflammation	1 (11)
Nausea	1 (11)
Non-cardiac chest pain	1 (11)
Splenic hematoma	1 (11)
Vomiting	1 (11)

No VOEs post-DP infusion in 9 patients

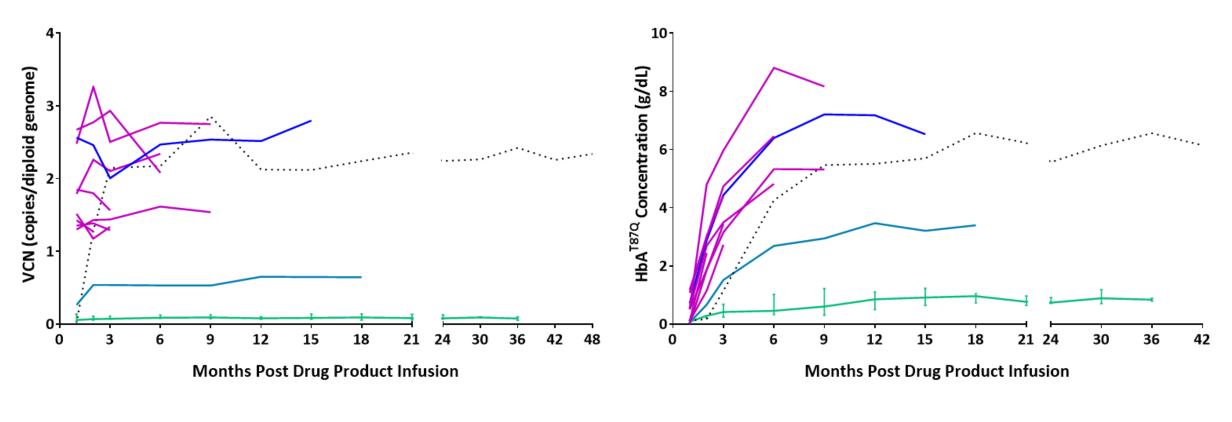
• SAEs were reported in 4 patients

.

- No AE considered related to DP
- No cases of VOD observed to date
- No vector-mediated RCL detected to date
- Integration site (IS) analysis data available for two patients at 6 month visit
 - Total IS: Showed consistent polyclonality
- One patient in Group A: MDS diagnosed 36 months post-DP infusion: no evidence of LVV integration in dysplastic cells; monosomy 7 mutation identified (associated with sporadic and chemotherapy-related MDS)

*Hematologic AEs commonly observed post-transplant have been excluded

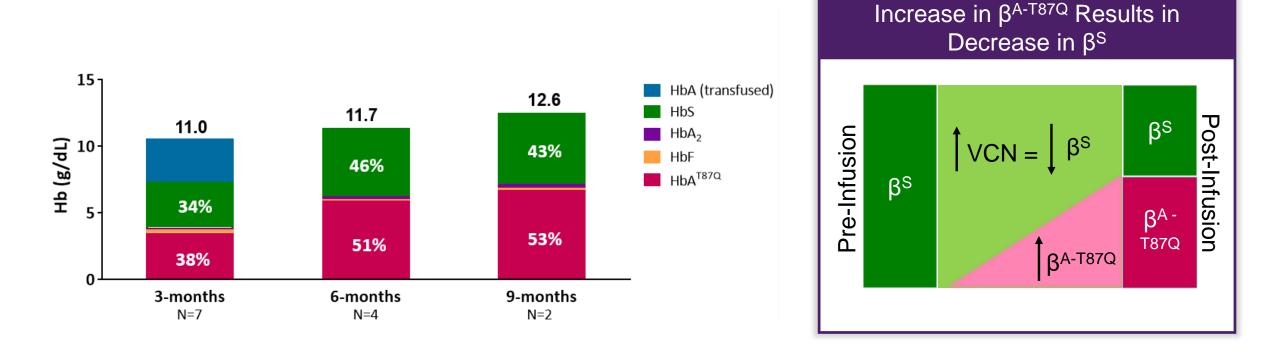
Critical Elements of LentiGlobin Success in SCD Fundamentally Improving Red Blood Cell Physiology


GOAL	GROUP C RESULTS
High & Stable Levels of HbA ^{T87Q} Derived Hemoglobin & Total Hemoglobin	 4 out of 4 patients with ≥47% anti-sickling Hb (range: 47% - 62%) at 6 months Sustained expression of HbA^{T87Q} levels through 9 months follow-up
Correction of Hemolysis	 Normalization of reticulocyte counts, lactate dehydrogenase and bilirubin levels
Pancellular Expression of HbA ^{T87Q} Resulting in Reduction of Sickling	 Pancellular expression shown in two independent assays of patient cells Reduction of sickling of patient RBCs at levels consistent with sickle trait cells
Improvement of Clinical Outcomes	 Increased total hemoglobin and robust HbA^{T87Q} production No VOEs in early clinical follow up

Critical Elements of LentiGlobin Success in SCD Fundamentally Improving Red Blood Cell Physiology

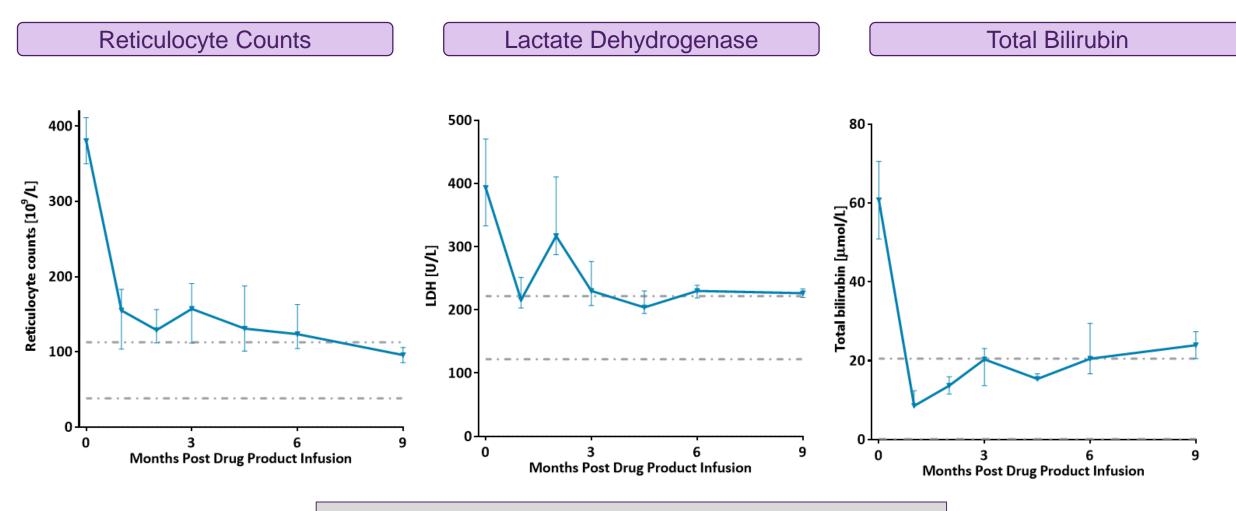
GOAL	GROUP C RESULTS
High & Stable Levels of HbA ^{T87Q} Derived Hemoglobin & Total Hemoglobin	 4 out of 4 patients with ≥47% anti-sickling Hb (range: 47% - 62%) at 6 months Sustained expression of HbA^{T87Q} levels through 9 months follow-up
	Normalization of ratioulogy to counter lastate debudrogeness
	 Normalization of reticulocyte counts, lactate dehydrogenase and bilirubin levels
	 Increased total hemoglobin and robust HbA^{T87Q} production No VOEs in early clinical follow up

Group C: Stable Peripheral Blood VCN, HbA^{T87Q} Trajectory Robust and Consistent



- Group A - Group B: 1312 - Group B: 1313 - Group C · · · 1204

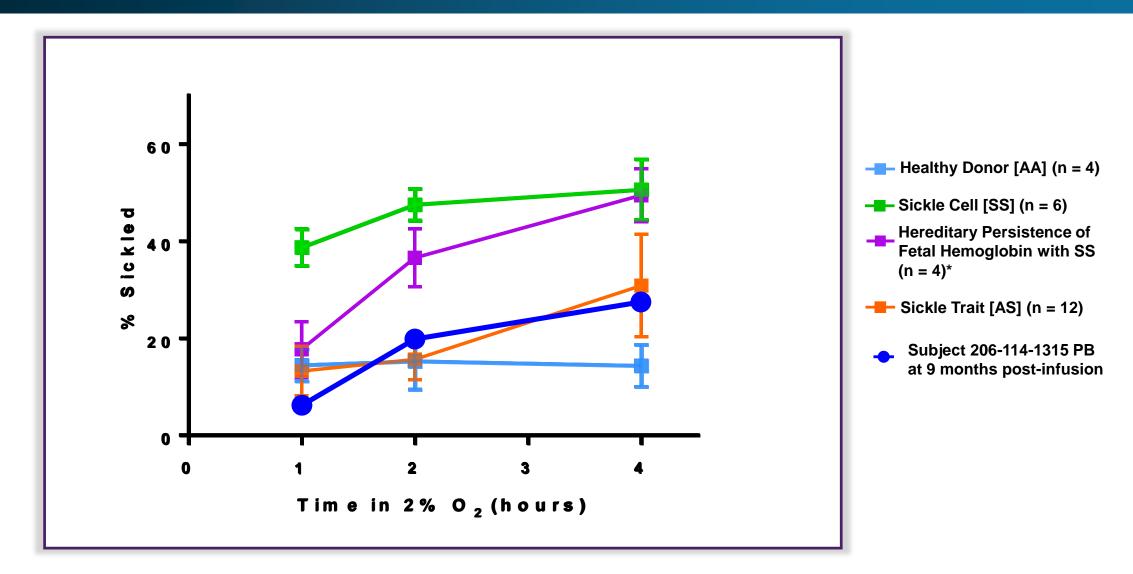
Group C Patients Achieving Sickle Trait-like Hemoglobin Distribution


β^s-globin decreasing with increasing HbA^{T87Q} (average concentration of hemoglobin per cell has not changed post-treatment)

Critical Elements of LentiGlobin Success in SCD Fundamentally Improving Red Blood Cell Physiology

GOAL	GROUP C RESULTS
	 4 out of 4 patients with ≥47% anti-sickling Hgb (range: 47% - 62%) at 6 months Sustained expression of HbA^{T87Q} levels through 9 months follow up
Correction of Hemolysis	 Normalization of reticulocyte counts, lactate dehydrogenase and bilirubin levels
	 Increased total hemoglobin and robust HbA^{T87Q} production No VOEs in early clinical follow up

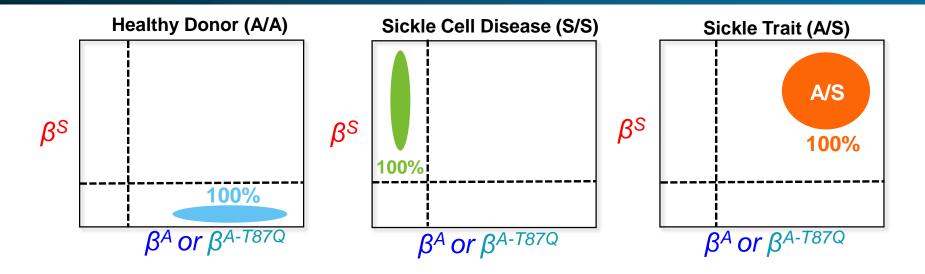
Impact on Clinical Outcomes of SCD in Group C Normalization of Key Biomarkers of Hemolysis Over Time

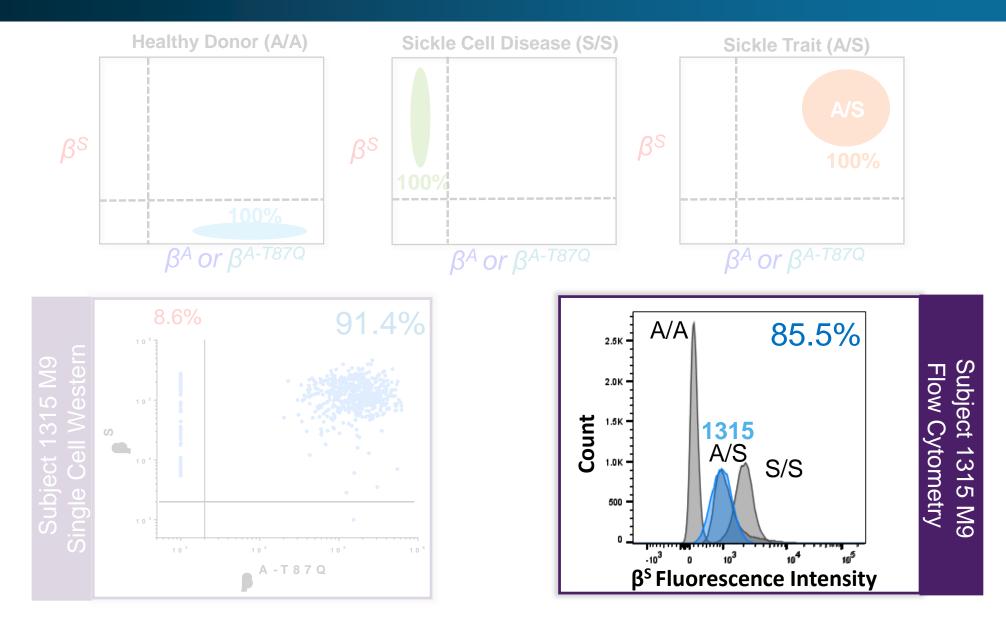


Dot-dash lines denote lower and upper limits of normal values

Critical Elements of LentiGlobin Success in SCD Fundamentally Improving Red Blood Cell Physiology

GOAL	GROUP C RESULTS
	 4 out of 4 patients with ≥47% anti-sickling Hgb (range: 47% - 62%) at 6 months Sustained expression of HbA^{T87Q} levels through 9 months follow up
	 Normalization of reticulocyte counts, lactate dehydrogenase and bilirubin levels
Pancellular Expression of HbA ^{T87Q} Resulting in Reduction of Sickling	 Pancellular expression shown in two independent assays of patient cells Reduction of sickling of patient RBCs at levels consistent with sickle trait cells
	 Increased total hemoglobin and robust HbA^{T87Q} production No VOEs in early clinical follow up

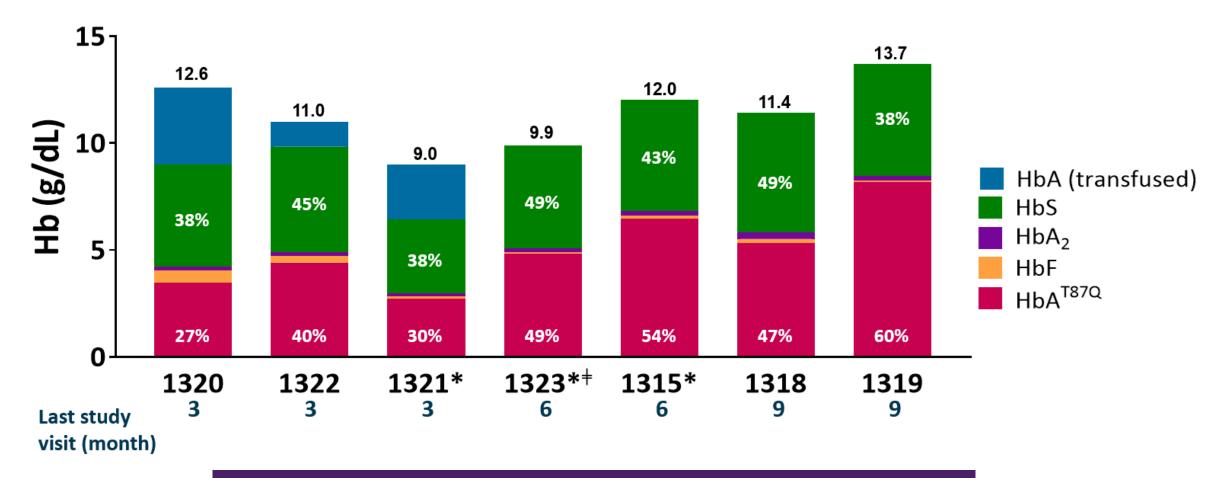

LentiGlobin has Anti-Sickling Activity Comparable to Sickle Trait Reduction in % Sickled and Time to Sickling in Patient RBCs Post-Treatment


*HbF levels in HPFH donors ranged from 28.1 to 42.3%

NASDAQ: BLUE

Two Independent Assays Indicate Near Pancellular β^{A-T87Q} Distribution Majority of Patient RBCs are Positive for Anti-Sickling Globin

Two Independent Assays Reveal Near Pancellular β^{A-T87Q} Distribution Majority of Patient RBCs are Positive for Anti-Sickling Globin



Critical Elements of LentiGlobin Success in SCD Fundamentally Improving Red Blood Cell Physiology

GOAL	GROUP C RESULTS
	 4 out of 4 patients with ≥47% anti-sickling Hgb (range: 47% - 62%) at 6 months Sustained expression of HbA^{T87Q} levels through 9 months follow up
	 Normalization of reticulocyte counts, lactate dehydrogenase and bilirubin levels
Improvement of Clinical Outcomes	 Increased total hemoglobin and robust HbA^{T87Q} production No VOEs in early clinical follow-up

Impact on Clinical Outcomes of SCD Resolution of Anemia (and Robust HbA^{T87Q} Levels) in All Patients by 6 Months; No VOEs Since DP Infusion

Group C: All patients free of VOEs as of data cut-off

Critical Elements of LentiGlobin Success in SCD Fundamentally Improving Red Blood Cell Physiology

GOAL	GROUP C RESULTS
High & Stable Levels of HbA ^{T87Q} Derived Hemoglobin & Total Hemoglobin	 4 out of 4 patients with ≥47% anti-sickling Hb (range: 47% - 62%) at 6 months Sustained expression of HbA^{T87Q} levels through 9 months follow-up
Correction of Hemolysis	 Normalization of reticulocyte counts, lactate dehydrogenase and bilirubin levels
Pancellular Expression of HbA ^{T87Q} Resulting in Reduction of Sickling	 Pancellular expression shown in two independent assays of patient cells Reduction of sickling of patient RBCs at levels consistent with sickle trait cells
Improvement of Clinical Outcomes	 Increased total hemoglobin and robust HbA^{T87Q} production No VOEs in early clinical follow-up

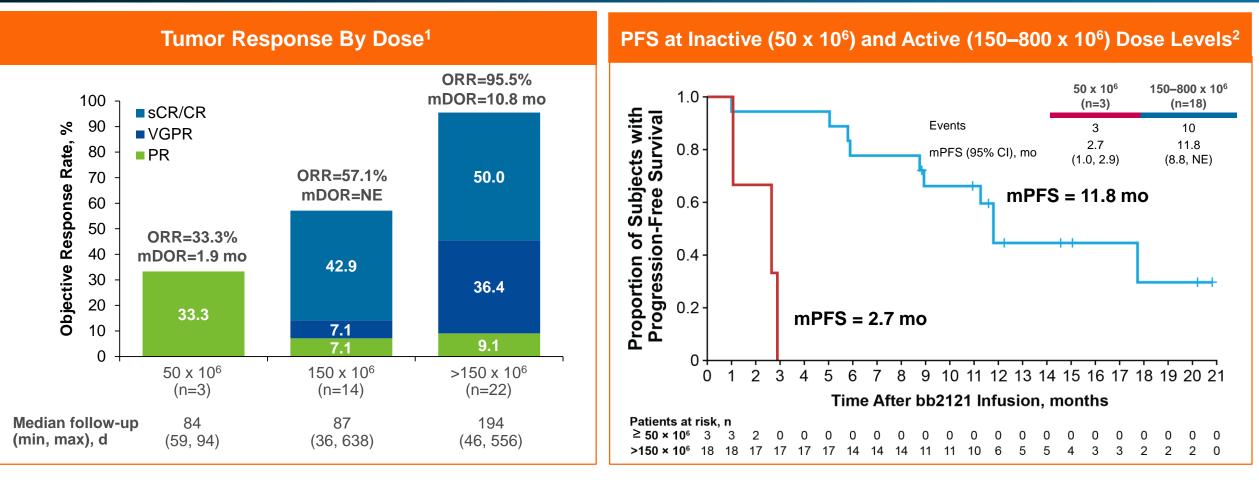
SCD Data – Key Takeaways

	 MAA Filed with EMA; commercial preparation on track Northstar-2: 10/11 patients with ≥3 months follow-up are transfusion free Northstar-3: First patient with β⁰/β⁰ genotype achieving normal total hemoglobin; 2/2 patients with ≥6 months follow up producing >10g/dL total hemoglobin
Sickle Cell Disease	 Accelerated development plan using novel composite primary endpoint based on hemoglobin Group C patients treated under refined manufacturing protocol show robust production of anti-sickling hemoglobin Early indications from biomarker analysis support fundamentally improving RBC physiology
	 bb2121: KarMMa enrollment complete; clinical program is advancing including planned 2019 studies in front line, in collaboration with Celgene bb21217: Overall response rate of 83% at first dose level tested (vs. 57% at same dose in CRB-401); early indications of increased persistence using enriched CAR T cells
	 shmiR: At ≥4 months post-gene therapy, ~70% F cells were observed and HbF contributed ~25-30% of total Hb CBL-B: Further validation underway; taking aim at solid tumors

Multiple Myeloma

Liviu Niculescu, M.D., Ph.D., SVP, global medical affairs, bluebird bio

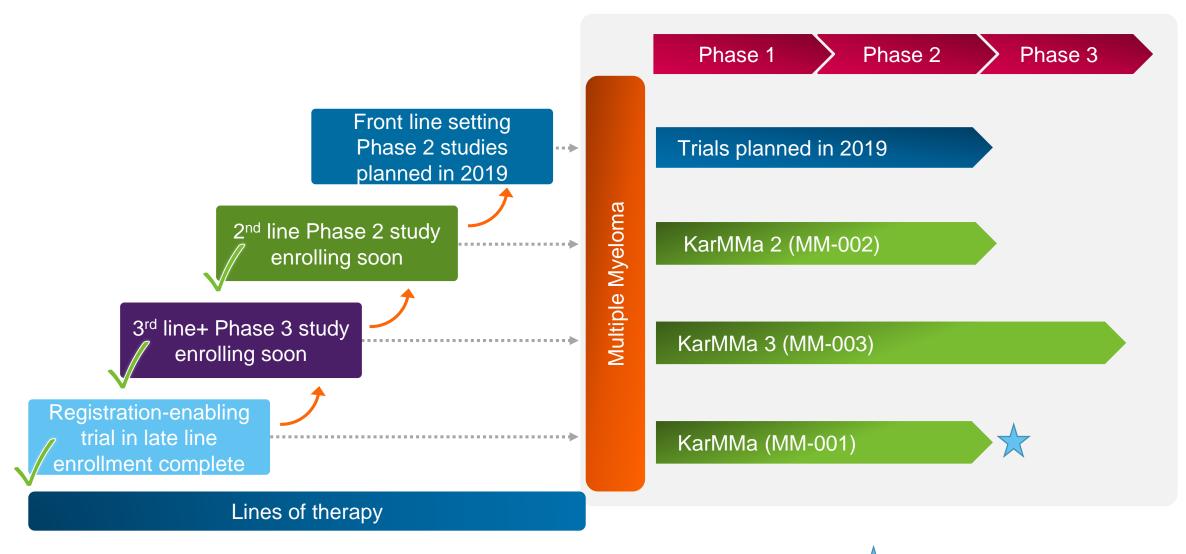
Multiple Myeloma


 A lethal blood cancer that often infiltrates the bone marrow causing anemia, kidney failure, immune problems and bone fractures

BCMA PROGRAM OVERVIEW

- bb2121: Enrollment in KarMMa registration-enabling study complete (N=140)
- Additional studies advancing:
 - KarMMa-2 in 2nd line Phase 2 study enrolling soon
 - KarMMa-3 in 3rd line+ Phase 3 study enrolling soon
 - Opportunities for bb2121 in newly diagnosed MM including high risk, transplant ineligible and transplant eligible vs. transplant under evaluation

CRB-401 Data at ASCO 2018 - Tumor Response and Progression-Free Survival

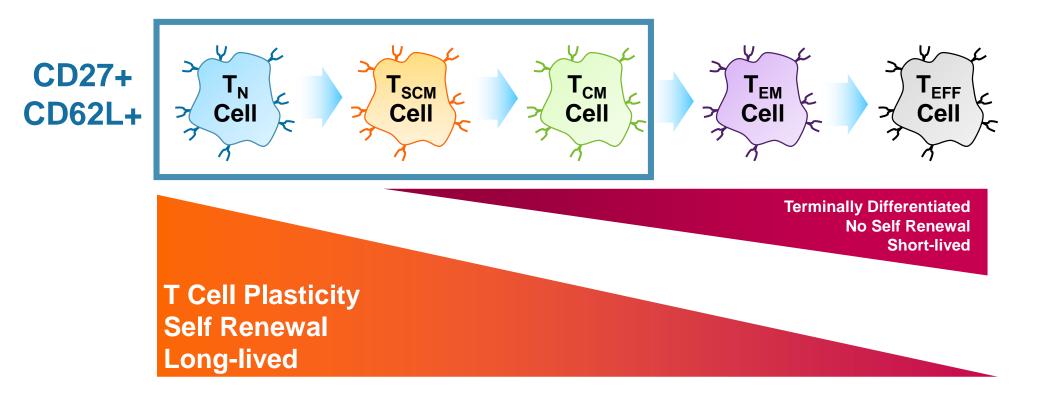


• 80.6% ORR across active dose cohorts (150-800 x 10⁶)

NASDAQ: BLUE

CR, complete response; mDOR, median duration of response; ORR, objective response rate; PD, progressive disease; PR, partial response; sCR, stringent CR; VGPR, very good partial response. Data cut-off: March 29, 2018. ¹Patients with ≥2 months of response data or PD/death within <2 months. ORR is defined as attaining sCR, CR, VGPR, or PR, including confirmed and unconfirmed responses. Median and 95% CI from Kaplan-Meier estimate. NE, not estimable. ²PFS in dose escalation cohort.

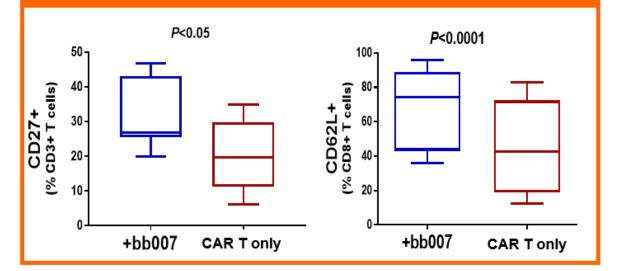
Advancing bb2121 into Earlier Lines of Multiple Myeloma



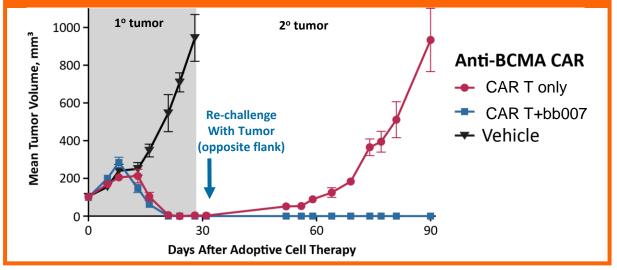
Multiple Myeloma: bb21217

Nina Shah, M.D., University of California, San Francisco

bb21217: PI3K Inhibition During Manufacturing Drives Increase in Long-lived, Memory-like T Cells

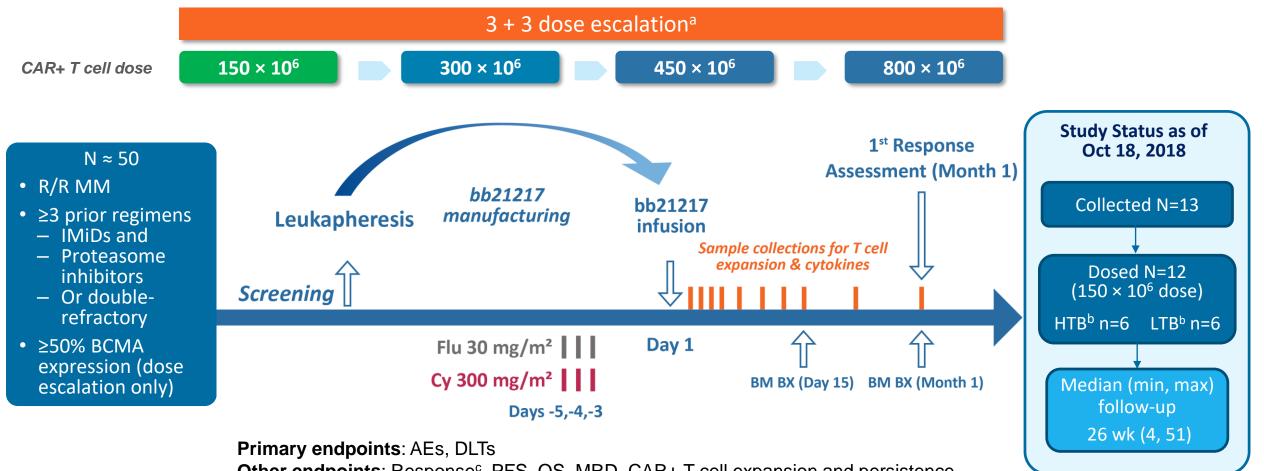


Hypothesis: Increasing long-lived, memory-like T Cell subsets in the drug product may result in enhanced persistence of functional anti-BCMA CAR T cells *in vivo*


Preclinical Models: bb21217 is Enriched for Memory-like T Cells Exhibits; Enhanced Persistence of Anti-tumor Effect

bb007 enriches for memory-like T Cell phenotype

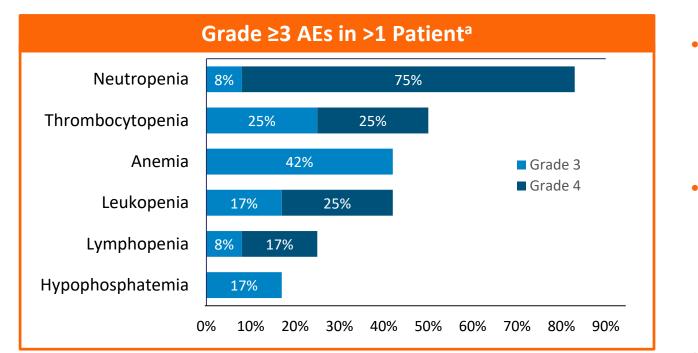
- CD62L and CD27 are markers of memory-like T cells
- bb21217 is significantly enriched for T cells with this memory-like phenotype


bb007 enhances anti-tumor effect in mouse models

- ONLY CAR T cells cultured with PI3K inhibitor bb007 (i.e. bb21217) clear a second tumor challenge
- Data are consistent with improved persistence of functional CAR T cells leading to sustained anti-tumor effect

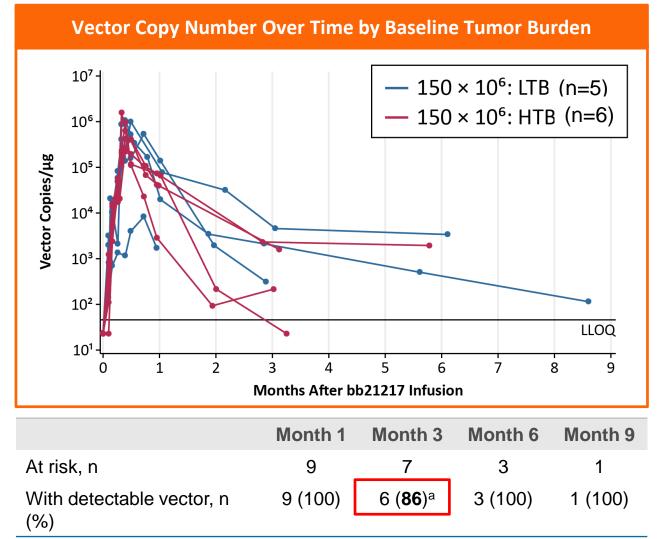
NASDAQ: BLUE

CRB-402 Phase 1 Study Design and Status


Other endpoints: Response^c, PFS, OS, MRD, CAR+ T cell expansion and persistence

AE, adverse events; BCMA, B-cell maturation antigen; DLT, dose-limiting toxicity; HTB, high tumor burden; IMiD, immunomodulatory imide drugs; LTB, low tumor burden; MRD, minimal residual disease; OS, overall survival; PFS, progression-free survival; R/R MM, relapsed/refractory multiple myeloma. ^aAll patients to date received 150 × 10⁶ CAR+ T cells; an intermediate dose of 300 × 10⁶ CAR+ T cells will be the next dose level. ^bHTB defined as ≥50% bone marrow plasma cells pre-infusion; LTB <50%. ^cPer International Myeloma Working Group criteria.

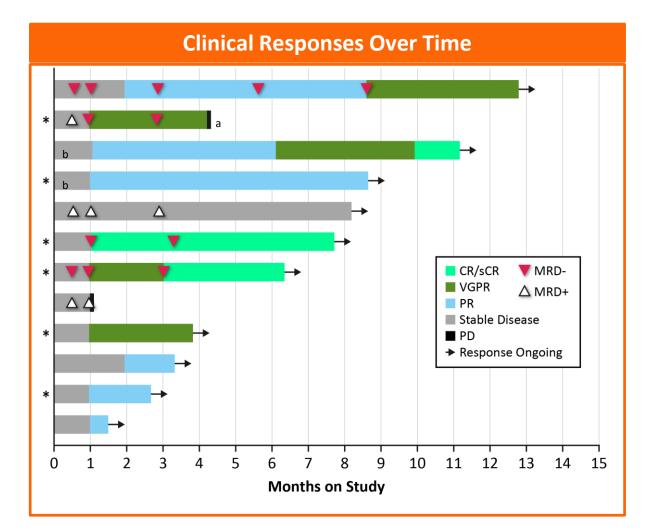
Early Clinical Safety and Tolerability Consistent with CAR T Experience


AEs of Special Interest ^a				
		Grade, n (%)		
	1	2	3	4
CRS⁵	4 (33)	3 (25)	1 (8)	_
Neurotoxicity ^c	1 (8)	1 (8)	_	1 (8)

- CRS occurred in 67% of patients
 - Mostly grade 1/2, 1 grade 3, no grade 4
 - Median time to onset of CRS 4.5 days (2,11)
 - Manageable with or without tocilizumab
- 1 patient experienced DLT (grade 4 encephalopathy and grade 3 CRS)
 - Patient had high tumor burden and rapidly accelerating disease at baseline
 - No other DLTs occurred
- 1 grade 3 catheter-related infection; no other severe infections reported to date
- 4 patients experienced 1 or more SAEs
- No deaths on study to date

AE, adverse event; DLT, dose-limiting toxicity; SAE, serious adverse event. ^aAEs occurring between bb21217 infusion and disease progression. ^bCytokine release syndrome (CRS) uniformly graded according to Lee et al., *Blood* 2014;124:188-195. ^cEvents selected as CAR T neurotoxicity on the case report form occurring within 90 days after bb21217 infusion.

Clinical Data is Early But Consistent with Goal of Enhanced Persistence



NASDAQ: BLUE

- Robust and reliable bb21217 CAR T cell
 expansion post-infusion observed at first dose
- Early bb21217 clinical data is consistent with robust functional CAR T cell persistence
 - Enrichment for memory-like CAR T cells observed in preclinical studies, and in patients post-infusion
 - Vector detectable up to 9 months post-infusion, and in 3/3 patients at 6-month time point
 - Sustained sBCMA suppression observed, reflecting ongoing plasma cell aplasia

Clinical Responses Observed in 10/12 Patients (83%) at First Dose Level Tested (150 x 10⁶ CAR+ T cells)

- 10/12 patients (83%) achieved an objective response at the first tested dose (150 × 10⁶ CAR+ T cells)
- Deepening responses over time; CR achieved as late as month 10
- 100% MRD negativity in 4/4 responders evaluable for MRD status
- Responses are ongoing in all but 1 responder; the first patient dosed continues response >1 year after treatment

NASDAQ: BLUE

CR, complete response; MRD, minimal residual disease; PR, partial response; VGPR, very good partial response. *Patients with high tumor burden. ^aProgression based exclusively on appearance of new bone lesions. ^bMRD status not available.

High Clinical Response Rate Observed at First Dose Level (150 x 10⁶ CAR+ T cells)

Clinical Response				
	bb21217-Treated (N=12)			
ORR, ^a n (%) [95% CI]	10 (83.3) [51.6, 97.9]			
sCR/CR	3 (25)			
≥VGPR	6 (50)			
MRD status in bone marrow, n				
MRD-evaluable responders ^b	4			
MRD-neg	4 ^c			
Median time to first response (min, max), ^{a,d} mo	1 (1, 2)			
Median time to best response (min, max), ^{a,d} mo	1 (1, 10)			
Median follow-up duration (min, max), mo	5.9 (1.0, 11.8)			

CR, complete response; MRD, minimal residual disease; ORR, objective response rate; PR, partial response; VGPR, very good partial response. *Patients with high tumor burden. aIncludes unconfirmed responses. bPatients with \geq PR and valid MRD assessments. Two MRD-neg. responses at 10⁻⁶ and 2 at 10⁻⁵ sensitivity level by Adaptive next-generation sequencing. dAmong 10 responders with \geq PR. **RB-402**

Promising Early Data with Next-Generation Anti-BCMA CAR T

- bb21217 demonstrated promising early clinical activity in heavily pretreated patients with relapsed/refractory multiple myeloma at first dose level tested
 - 83% ORR with 90% of responses ongoing
 - Elimination of MRD in the bone marrow of all 4 evaluable responders
- Early indications of increased persistence using enriched CAR T cells
- Safety profile appears consistent with known toxicities of CAR T cell therapies
- Dose escalation is ongoing

BCMA Data – Key Takeaways

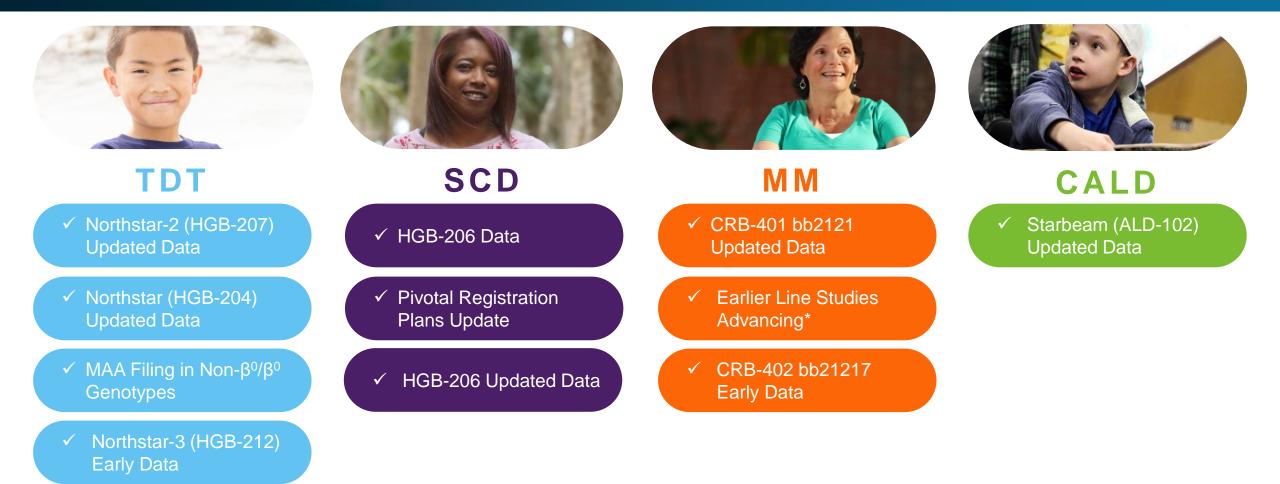
	 MAA Filed with EMA; commercial preparation on track Northstar-2: 10/11 patients with ≥3 months follow-up are transfusion free Northstar-3: First patient with βº/β⁰ genotype achieving normal total hemoglobin; 2/2 patients with ≥6 months follow up producing >10g/dL total hemoglobin
	 Accelerated development plan using novel composite primary endpoint based on hemoglobin Group C patients treated under refined manufacturing protocol show robust production of anti-sickling hemoglobin Early indications from biomarker analysis support fundamentally improving RBC physiology
Multiple Myeloma	 bb2121: KarMMa enrollment complete; clinical program is advancing including planned 2019 studies in front line, in collaboration with Celgene bb21217: Overall response rate of 83% at first dose level tested (vs. 57% at same dose in CRB-401); early indications of increased persistence using enriched CAR T cells
	 shmiR: At ≥4 months post-gene therapy, ~70% F cells were observed and HbF contributed ~25-30% of total Hb CBL-B: Further validation underway; taking aim at solid tumors

ASH Highlights: Next Generation Programs / Platforms

First clinical demonstration of the potential to genetically manipulate HbF levels through BCL11a

- Novel LVV expressing a shRNA^{miR} to knock down BCL11a at the level *exclusively* in erythroid cells
- Robust knock down of BCL11a observed in patient cells
- At ≥4 months post-gene therapy, ~70% F cells were observed and HbF contributed ~25-30% of total Hb

Example of bbb's T cell enhancement technologies aimed at delivering transformative outcomes for solid tumors


- bbb megaTAL technology used to efficiently and specifically knockout CBL-B in CAR T cells via gene editing
- Increases cytokine production in response to tumor cells *in vitro*
- Enhances <u>anti-tumor activity</u> of CAR T cells in a mouse xenograft model

Flipping the Switch: Initial Results of Genetic Targeting of the Fetal to Adult Globin Switch in Sickle Cell Patients

Esrick et al. (Abstract #801)

Knockout of CBL-B Greatly Enhances Anti-Tumor Activity of CAR T Cells

Ending 2018 Strong: Key Milestones Achieved

 ✓ Northstar-2 Updated Data

NASDAQ: BLUE

ASH Data – Key Takeaways

Transfusion-Dependent β-Thalassemia	 MAA Filed with EMA; commercial preparation on track Northstar-2: 10/11 patients with ≥3 months follow-up are transfusion free Northstar-3: First patient with β⁰/β⁰ genotype achieving normal total hemoglobin; 2/2 patients with ≥6 months follow-up producing >10g/dL total hemoglobin
Sickle Cell Disease	 Accelerated development plan using novel composite primary endpoint based on hemoglobin Group C patients treated under refined manufacturing protocol show robust production of anti-sickling hemoglobin Early indications from biomarker analysis support fundamentally improving RBC physiology
Multiple Myeloma	 bb2121: KarMMa enrollment complete; clinical program is advancing including planned 2019 studies in front line, in collaboration with Celgene bb21217: Overall response rate of 83% at first dose level tested (vs. 57% at same dose in CRB-401); early indications of increased persistence using enriched CAR T cells
Next-generation	 shmiR: At ≥4 months post-gene therapy, ~70% F cells were observed and HbF contributed ~25-30% of total Hb CBL-B: Further validation underway; taking aim at solid tumors